
*By signing this order form, you agree that we will charge your account in Canadian
dollars for the “CAD” amounts indicated above. Because of fluctuations in the
exchange rates, the actual amount charged in your currency on your credit card
statement may vary slightly.

Choose a Subscription type:

CCaannaaddaa//UUSSAA $$ 7777..9999 CCAADD (($$5599..9999 UUSS**))

IInntteerrnnaattiioonnaall AAiirr $$110055..1199 CCAADD (($$8800..8899 UUSS**))

CCoommbboo eeddiittiioonn aadddd--oonn $$ 1144..0000 CCAADD (($$1100..0000 UUSS))

((pprriinntt ++ PPDDFF eeddiittiioonn))

Your charge will appear under the name "Marco Tabini & Associates, Inc." Please
allow up to 4 to 6 weeks for your subscription to be established and your first issue
to be mailed to you.

*US Pricing is approximate and for illustration purposes only.

php|architect Subscription Dept.
P.O. Box 54526
1771 Avenue Road
Toronto, ON M5M 4N5
Canada

Name: __

Address: ___

City: ___

State/Province: ____________________________________

ZIP/Postal Code: ___________________________________

Country: ___

Payment type:
VISA Mastercard American Express

Credit Card Number:________________________________

Expiration Date: _____________________________________

E-mail address: ______________________________________

Phone Number: ____________________________________

Visit: http://www.phparch.com/print for
more information or to subscribe online.

Signature: Date:

To subscribe via snail mail - please detach/copy this form, fill it
out and mail to the address above or fax to +1-416-630-5057

php|architect
The Magazine For PHP Professionals

YYoouu’’llll nneevveerr kknnooww wwhhaatt wwee’’llll ccoommee uupp wwiitthh nneexxtt

Upgrade to the

Print edition

and save!

For existing

subscribers

Login to your account

for more details.

LOWER PRICE!

NEW

LLOOWWEERR PPRRIICCEE!!
NEW

http://www.phparch.com/redir/363/663670
http://www.phparch.com/redir/412/966563

FFEEAATTUURREE

June 2005 ● PHP Architect ● www.phparch.com 37

Every computer language needs some form of con-
tainer to hold data—variables. In some languages,
those variables have a specific type attached to

them. They can be a string, a number, an array, an
object or something else. Examples of such statically-
typed languages are C and pascal. Variables in PHP do
not have this specific restraint. They can be a string in
one line, but a number in the next line. Converting
between types is also easy to do, and often, even auto-
matic. These loosely-typed variables are one of the
properties that make PHP such an easy and powerful
language, although they can sometimes also cause
interesting problems.

Internally, in PHP, those variables are all stored in a
similar container, called a zval container (also called
“variable container”). This container keeps track of sev-
eral things that are related to a specific value. The most
important things that a variable container contains are
the value of the “variable”, but also the type of the vari-
able. Python is similar to PHP in this regard as it also
labels each variable with a type. The variable container
contains a few more fields that the PHP engine uses to
keep track of whether a value is a reference or not. It
also keeps reference count of its value.

Variables are stored in a symbol table, which is quite
analogous to an associative array. This array has keys
that represent the name of the variable, and those keys
point to variable containers that contain the value (and
type) of the variables. See Figure 1 for an example of
this.

Reference Counting
PHP tries to be smart when it deals with copying vari-
ables like in $$aa == $$bb. Using the == operator is also called
an “assign-by-value” operation. While assigning by
value, the PHP engine will not actually create a copy of
the variable container, but it will merely increase the
rreeffccoouunntt field in the variable container. As you can
imagine this saves a lot of memory in case you have a
large string of text, or a large array. Figure 2 shows how
this “looks”. In Step 1 there is one variable, aa, which

REQUIREMENTS
PHP 4.3.0+

OS Any

Other Software N/A

Code Directory references

References in PHP:
An In-Depth Look

by Derick Rethans

FF
EE

AA
TT

UU
RR

EE

PHP’s handling of variables can be non-obvious, at times.
Have you ever wondered what happens at the engine level
when a variable is copied to another? How about when a
function returns a variable “by reference?” If so, read on.

Figure 1

contains the text tthhiiss iiss and it has (by default) a ref-
erence count of 1. In step 2, we assign variable $$aa to
variable $$bb and $$cc. Here, no copy of the variable con-
tainer is made, only the refcount value gets updated
with 1 for each variable that is assigned to the contain-
er. Because we assign two more variables here, the
rreeffccoouunntt gets updated to 2 and ends up being 3 after
the two assignment statements.

Now, you might wonder what would happen if the
variable $$cc gets changed. Two things might happen,
depending on the value of the rreeffccoouunntt. If the value is
1, then the container simply gets updated with its new
value (and possibly its type, too). In case the rreeffccoouunntt
value is larger than 1, a new variable container gets cre-
ated containing the new value (and type). You can see
this in step 3 of Figure 2. The rreeffccoouunntt value for the
variable container that is linked to the variable $$aa is
decreased by one so that the variable container that
belongs to variable $$aa and $$bb now has a rreeffccoouunntt of 2,
and the newly created container has a rreeffccoouunntt of 1.

When uunnsseett(()) is called on a variable the rreeffccoouunntt
value of the variable container that is linked to the vari-
able that is unset will be decreased by one. This hap-
pens when we call uunnsseett(($$bb)) in step 4. If the rreeffccoouunntt

value drops below 1, the PHP Engine will free the vari-
able container. The variable container is then
destroyed, as you can see in step 5.

Passing Variables to Functions
Besides the global symbol table that every script has,
every call to a user defined function creates a symbol
table where a function locally stores its variables. Every
time a function is called, such a symbol table is created,
and every time a function returns, this symbol table is
destroyed. A function returns by either using the rreettuurrnn
statement, or by implicitly returning because the end of
the function has been reached.

In Figure 3, I illustrate exactly how variables are
passed to functions. In step 1, we assign a value to the
variable $$aa, again—“this is”. We pass this variable to the
ddoo__ssoommeetthhiinngg(()) function, where it is received in the
variable $$ss. In step 2, you can see that it is practically
the same operation as assigning a variable to another
one (like we did in the previous section with $$bb == $$aa),
except that the variable is stored in a different symbol
table—the one that belongs to the called function—
and that the reference count is increased twice, instead
the normal once. The reason for this is that the func-
tion’s stack also contains a reference to the variable
container.

When we assign a new value to the variable $$ss in step
3, the rreeffccoouunntt of the original variable container is
decreased by one and a new variable container is creat-
ed, containing the new variable. In step 4, we return
the variable with the rreettuurrnn statement. The returned
variable gets an entry in the global symbol table and
the rreeffccoouunntt value is increased by 1. When the function
ends, the function’s symbol table will be destroyed.
During the destruction, the engine will go over all vari-
ables in the symbol table and decrease the rreeffccoouunntt of
each variable container. When a rreeffccoouunntt of a variable
container reaches 0, the variable container is destroyed.
As you see, the variable container is again not copied
when returning it from the function due to PHP’s refer-
ence counting mechanism.

If the variable $$ss would not have been modified in
step 3 then variable $$aa and $$bb would still point to the
same variable container which would have a rreeffccoouunntt
value of 2. In this situation, a copy of the variable con-
tainer that was created with the statement $$aa == ““tthhiiss
iiss”” would not have been made.

Introducing References
References are a method of having two names for the
same variable. A more technical description would be:
references are a method of having two keys in a symbol
table pointing to the same zval container. References
can be created with the reference assignment operator
&&==.

June 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

38

References in PHP: An In-Depth Look

Figure 2

Figure 4 gives a schematic overview of how refer-
ences work in combination with reference counting. In
step 1, we create a variable $$aa that contains the string
“this is”. Then in step two we create two references ($$bb
and $$cc) to the same variable container. The rreeffccoouunntt
increases normally for each assignment making the
final rreeffccoouunntt 3, after both assignments by reference
($$bb ==&& $$aa and $$cc ==&& $$aa), but because the reference
assignment operator is used, the other value iiss__rreeff is
now set to 1. This value is important for two reasons.
The second one I will divulge a little bit later in this arti-
cle, and the first reason that makes this value important
is when we are reassigning a new value to one of the
three variables that all point to the same variable con-
tainer.

If the iiss__rreeff value is set to 0 when a new value is set
for a specific variable, the PHP engine will create a new
variable container as you could see in step 3 of Figure
2. But if the iiss__rreeff value is set to 1, then the PHP
engine will not create a new variable container and sim-
ply only update the value to which one of the variable
names point as you can see in step 2 of Figure 4. The
exact same result would be reached when the state-
ment $$aa == 4422 was used instead of $$bb == 4422. After the
variable container is modified, all three variables $$aa, $$bb

FFEEAATTUURREE

June 2005 ● PHP Architect ● www.phparch.com 39

FFEEAATTUURREE

Figure 3

Figure 4

References in PHP: An In-Depth Look

and $$cc will contain the value 4422.
In step 4, we use the uunnsseett(()) language construct to

remove a variable—in this case variable $$cc. Using
uunnsseett(()) on a variable means that the rreeffccoouunntt value of
the variable container that the variable points to gets
decreased by 1. This works exactly the same for refer-
enced variables. There is one difference, though, that
shows in step 5. When the reference count of a variable
container reaches 1 and the iiss__rreeff value is set to 1, the
iiss__rreeff value is reset to 0. The reason for this is that a
variable container can only be marked as a referenced
variable container when there is more than one variable
pointing to the variable container.

Mixing Assign-by-Value and Assign-by-

Reference
Something interesting—and perhaps unexpected—
happens if you mix an assign-by-value call and an
assign-by-reference call. This shows in Figure 5. In the
first step we create two variables $$aa and $$bb, where the
latter is assigned-by-value to the former. This creates a
situation where there is one variable container with
iiss__rreeff set to 0 and rreeffccoouunntt set to 2. This should be
familiar by now.

In step 2 we proceed by assigning variable $$cc by ref-
erence to variable $$bb. Here, the PHP engine will create
a copy of the variable container. The variable $$aa keeps

pointing to the original variable container but the
rreeffccoouunntt is, of course, decreased to 1 as there is only
one variable pointing the this variable container now.
The variables $$bb and $$cc point to the copied container
which has now a rreeffccoouunntt of 2 and the iiss__rreeff value is
set to 1.

You can see that in this case, using a reference does
not save you any memory, it actually uses more memo-
ry, as it had to duplicate the original variable container.
The container had to be copied, otherwise the PHP
engine would have no way of knowing how to deal
with the reassignment of one of the three variables as
two of them were references to the same container $$bb
and $$cc, while the other was not supposed to be a refer-
ence. If there is only one container with rreeffccoouunntt set to
3, and iiss__rreeff set to 1, then it is impossible to figure
that out. That is the reason why the PHP engine needs
to create a copy of the container when you do an
assignment-by-reference.

If we switch the order of assignments—first we assign
$$aa by reference to $$bb and then we assign $$aa by value to
$$cc—then something similar happens. Figure 6 shows
how this is handled. In the first step we assign the vari-
able $$aa to the string “this is” and then we proceed to
assign $$aa by reference to variable $$bb. We now have one
variable container where iiss__rreeff is 1 and rreeffccoouunntt is 2.
In step 2, we assign variable $$aa by value to variable $$cc,
now a copy of the variable container is made in order
for the PHP engine to be able to handle modifications
to the variables, correctly, with the same reasons as
stated in the previous paragraph.

But if you go back to step 2 of Figure 2, where we
assign the variable $$aa to both $$bb and $$cc, you see that
no copy is made here.

Passing References to Functions
Variables can also be passed-by-reference to functions.
This is useful when a function needs to modify the value
of a specific variable when it is called. The script in
Figure 7 is a slightly modified version of the script that
you have already seen in Figure 3. The only difference
is the ampersand (&&) in front of the $$ss variable in the
declaration of the function ddoo__ssoommeetthhiinngg(()). This amper-
sand instructs the PHP engine that the variable to
which the ampersand is applied is going to be passed
by reference and not by value. A different name for a
passed-by-reference variable is an “out variable”.

When a variable is passed by reference to a function
the new variable in the function’s symbol table is point-
ed to the old container and the rreeffccoouunntt value is
increased by 2 (one for the symbol table, and one for
the stack). Just as in a normal assignment-by-reference
the iiss__rreeff value inside the variable container is also set
to 1 as you can see in step 2. From here on, the same
things happen as with a normal reference like in step 3,

June 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

40

Figure 5

References in PHP: An In-Depth Look

Figure 6

where no copy of the variable container is made if we
assign a new value to the variable $$ss.

The rreettuurrnn $$ss;; statement is basically the same as the
$$cc == $$aa statement in step 2 of Figure 6. The global vari-
able $$aa and the local variable $$ss are both references to
the same variable container and the logic dictates that
if iiss__rreeff is set to 1 for a specific container and this con-
tainer is assigned to another variable by-value, the con-
tainer does not need to be duplicated. This is exactly
what happens here, except that the newly created vari-
able is created in the global symbol table by the assign-
ment of the return value of the function with the state-
ment $$bb == ddoo__ssoommeetthhiinngg(($$ss)).

Returning by Reference
Another feature in PHP is the ability to “return by refer-
ence”. This is useful, for example, if you want to select
a variable for modification with a function, such as
selecting an array element or a node in a tree structure.
In Figure 8 we show how returning by references work
by means of an example. In this example (step 1), we
define a $$ttrreeee variable (which is actually not a tree, but
a simple array) that contains three elements. The three
elements have key values of 1, 2 and 3, and all of them
point to a string describing the English word that
matches with the key’s value (ie. oonnee, ttwwoo and tthhrreeee).

This array gets passed to the ffiinndd__nnooddee(()) function by
reference, along with the key of the element that the

ffiinndd__nnooddee(()) function should look for and return. We
need to pass by reference here, otherwise we can not
return a reference to one of the elements, as we will be
returning a reference to a copy of the $$ttrreeee. When
$$ttrreeee is passed to the function it has a rreeffccoouunntt of 3
and iiss__rreeff is set to 1. Nothing new here.

The first statement in the function, $$iitteemm ==&&

$$nnooddee[[$$kkeeyy]], causes a new variable to be created in the
symbol table of the function, which points to the array
element where the key is “3” (because the variable $$kkeeyy
is set to 3). In this step 3 you see that the creation of
the $$iitteemm by assigning it by reference to the array ele-
ment causes the rreeffccoouunntt value of the variable contain-
er that belongs to the array element to be increased by
1. The iiss__rreeff value of that variable container is now 1,
too, of course.

The interesting things happen in step 4 where we
return $$iitteemm (by reference) back to the calling scope
and assign it (by reference) to $$nnooddee. This causes the
rreeffccoouunntt of the variable container to which the 3rd
array key points to be set to 3. At this point $$ttrreeee[[33]],
$$iitteemm (from the function’s scope) and $$nnooddee (global
scope) all point to this variable container. When the
symbol table of the function is destroyed (in step 5),
the rreeffccoouunntt value decreases from 1 to 2. $$nnooddee is now
a reference to the third element in the array.

If the variable $$iitteemm would not have been assigned by
reference to the return value of the ddoo__ssoommeetthhiinngg(())

FFEEAATTUURREE

June 2005 ● PHP Architect ● www.phparch.com 41

Figure 7

References in PHP: An In-Depth Look

June 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

42

Figure 8

References in PHP: An In-Depth Look

function, but instead would have been assigned by
value, then $$nnooddee would not have been a reference to
$$ttrreeee[[33]]. In this case, the rreeffccoouunntt value of the variable
container to which $$ttrreeee[[33]] points is then 1 after the
function ends, but for some strange reason the iiss__rreeff
value is not reset to 0 as you might expect. My tests did
not find any problems with this, though, in this simple
example. If the function ddoo__ssoommeetthhiinngg(()) would not
have been a “return-by-reference function”, then again
the $$nnooddee variable would not be a reference to
$$ttrreeee[[33]]. In this case, the iiss__rreeff value of the variable
container would have been reset to 0.

Finally, in step 6, we modify the value in the variable
container to which both $$nnooddee and $$ttrreeee[[33]] point.

Please do note that it is harmful not to accept a refer-
ence from a function that returns a reference. In some
cases, PHP will get confused and cause memory corrup-

tions which are very hard to find and debug. It is also
not a good idea to return a static value as reference, as
the PHP engine has problems with that too. In PHP 4.3,
both cases can lead to very hard to reproduce bugs and
crashes of PHP and the web server. In PHP 5, this works
all a little bit better. Here you can expect a warning and
it will behave “properly”. Hopefully, a backported fix
for this problem makes it into a new minor version of
PHP 4—PHP 4.4.

The Global Keyword
PHP has a feature that allows the use of a global vari-
able inside a function: you can make this connection
with the gglloobbaall keyword. This keyword will create a ref-
erence between the local variable and the global one.
Figure 9 shows this in an example.

In step 1 and 2, we create the variable $$vvaarr and call

FFEEAATTUURREE

June 2005 ● PHP Architect ● www.phparch.com
43

Figure 9

References in PHP: An In-Depth Look

the function uuppddaattee__vvaarr(()) with the string literal “oonnee”
as the sole parameter. At this point, we have two vari-
able containers. The first one is pointed to from the
global variable $$vvaarr, and the second one is the $$vvaall
variable in the called function. The latter variable con-
tainer has a rreeffccoouunntt value of 2, as both the variable on
the stack and the local variable $$vvaall point to it.

The gglloobbaall $$vvaarr statement, in the function, creates a
new variable in the local scope, which is created as a
reference to the variable with the same name in the
global scope. As you can see in step 3, this increases the
rreeffccoouunntt of the variable container from 1 to 2 and this
also sets the iiss__rreeff value to 1.

In step 4, we unset the variable $$vvaarr. Against some
people’s expectation, the global variable $$vvaarr does not
get unset—as the uunnsseett(()) was done on a reference to
the global variable $$vvaarr and not that variable itself. To
reestablish the reference, we employ the gglloobbaall key-
word, again in step 5. As you can see, we have re-cre-
ated the same situation as in step 3. Instead of using
gglloobbaall $$vvaarr we could just as well have used $$vvaarr ==&&
$$GGLLOOBBAALLSS[[‘‘vvaarr’’]] as it would have created the exact

same situation.
In step 6, we continue to reassign the $$vvaarr variable to

the function’s $$vvaall argument. This changes the value to
which both the global variable $$vvaarr and the local vari-
able $$vvaarr point; this is what you would expect from a
referenced variable. When the function ends, in step 7,
the reference from the variable in the scope of the func-
tion disappears, and we end up with one variable con-
tainer with a rreeffccoouunntt of 1 and an iiss__rreeff value of 0.

Abusing References
In this section, I will give a few examples that show you
how references should not be used—in some cases
these examples might even create memory corruptions
in PHP 4.3 and lower.

Example 1: “Returning static values by-reference”. In
Figure 10, we have a very small script with a return-by-
reference function called ddeeffiinniittiioonn(()). This function
simply returns an array that contains some elements.
Returning by reference makes no sense here, as the
exact same things would happen internally if the vari-
able container holding the array was returned by value,
except that in the intermediate step (step 3) the iiss__rreeff
value of the container would not be set to 1, of course.
In case the $$ddeeff variable in the function’s scope would
have been referenced by another variable, something
that might happen in a class method where you do
$$ddeeff == $$tthhiiss-->>ddeeff then the return-by-reference prop-
erties of the function would have copied the array,
because this creates a similar situation as in step 2 of
Figure 5.

Example 2: “Accepting references from a function
that doesn’t return references”. This is potentially dan-

June 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

44

Figure 10

1 <?php
2 function &split_list($emails)
3 {
4 $emails =& preg_split(“/[,;]/”, $emails);
5 return $emails;
6 }
7
8 $emails =

split_list(‘derick@php.net;derick@derickrethans.nl;dr@ez.no’);
9 ?>

10

Listing 1

References in PHP: An In-Depth Look

gerous; PHP 4.3 (and lower) does not handle this prop-
erly. In Listing 1, you see an example of something that
is not going to work properly. This function was imple-
mented with performance in mind, trying not to copy
variable containers by using references. As you should
know after reading this article, this is not going to buy
you anything. There are a few reasons why it doesn’t
work. The first reason is that the PHP internal function
pprreegg__sspplliitt(()) does not return by reference—actually,
no internal function in PHP can return anything by ref-
erence. So, assigning the return value by reference
from a function that doesn’t return a reference is point-
less. The second reason why there is no performance
benefit, here, is the same one as in Example 1, in the
previous paragraph: you’re returning a static value—
not a reference to a variable—it does not make sense to
make the sspplliitt__lliisstt(()) function to return-by-reference.

Conclusion
After reading this article, I hope that you now fully
understand how references, refcounting, and variables
work in PHP. It should also have explained that assign-
ing by reference does not always save you memory—
it’s better to let the PHP engine handle this optimiza-
tion. Do not try to outsmart PHP yourself here and only
use references when they are really needed.

In PHP 4.3, there are still some problems with refer-
ences, for which patches are in the works. These patch-
es are backports from PHP 5-specific code, and
although they work fine, they will break binary compat-
ibility—meaning that compiled extensions no longer
work after those patches are put into PHP. In my opin-
ion, those hard to produce memory corruption errors
should be fixed in PHP 4 too, though, so perhaps this

creates the need for a PHP 4.4 release. If you’re having
problems, you can try to use the patch located at
hhttttpp::////ffiilleess..ddeerriicckkrreetthhaannss..nnll//ppaattcchheess//zzee11--rreettuurrnn--
rreeffeerreennccee--2200005500442299..ddiiffff..ttxxtt

The PHP Manual also has some information on refer-
ences, although it does not explain the internals very
well. The URL for the section in PHP’s Manual is
hhttttpp::////pphhpp..nneett//llaanngguuaaggee..rreeffeerreenncceess

FFEEAATTUURREE

June 2005 ● PHP Architect ● www.phparch.com
45

References in PHP: An In-Depth Look

Have you had your PHP today?Have you had your PHP today?

The Magazine For PHP Professionals

http://www.phparch.com

NEW COMBO NOW AVAILABLE: PDF + PRINT

NNEEWW
LLoowweerr PPrriiccee!!

About the Author ?>

To Discuss this article:

http://forums.phparch.com/228

Derick Rethans provides solutions for Internet related problems. He has contributed in a
number of ways to the PHP project, including the mcrypt extension, bug fixes, additions
and leading the QA team. He now works as developer for eZ systems A.S.. In his spare time
he likes to work on SRM: Script Running Machine and Xdebug, watch movies and travel.
You can reach him at ddeerriicckk@@ddeerriicckkrreetthhaannss..nnll

http://www.phparch.com/redir/418/713132
http://forums.phparch.com/228
derick@derickrethans.nl

